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I. INTRODUCTION

The advent of advanced missile systems with increased performance

requirements has necessitated the development and use of carbon-carbon

composites for reentry vehicle nose tips. Two material properties of

importance in a reentry environment are recession rate and transition

altitude. Since a variety of precursor materials (fibers and matrices),

reinforcement constructions (orthogonal, polar, and seven-directional), and

processing methods (high and low pressure) exist, a large number of candi-

date composites is available. Unfortunately, ablation tests are both expen-

sive and time-consuming in that composites must be fabricated and models

machined and tested. Although the tests have been informative and the data

have been useful, the results have also been confusing, if not conflicting.

Therefore, a preliminary screening test was sought which could provide a

means of selecting the most promising fibers and composites in an economi-

cal and expedient manner.

According to studies of events occurring during reentry, sublimation

(vaporization and particle emission) was the primary mechanism of mass

loss. 1, Heat fluxes typical of reentry, 30,000 (laminar flow) to 80,000

.(turbulent flow) (Btu/ft )/sec could be obtained from a CO laser in the
absence of strong aerodynamic flow. In addition to evaluating a screening

criterion, this test could provide ablated surfaces for studying the mech-

anisms of ablation. Therefore, the objective of this program was to study

the mass loss characteristics of various precursor materials and compo-

sites by laser irradiation. The experimental approach was to irradiate

various carbon/graphite filaments and pyrolytic graphite (PG) in both the

1 K. Kratsch, Personal Communication, Science Applications, Inc.
(May 1976).

S2 A. G. Whittaker and P. L. Kintner, Particle Emission and Related

Morphological Changes Occurring During the Sublimation of Graphitic
Carbons, 14, 257 (1976).
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longitudinal and transverse directions, and bul:- pitch matrix and carbon-

carbon composites in one direction. Total mass loss was measured after

each exposure and the irradiated surfaces were characterized by optical

and scanning electron microscopy (SEM). Through this type of study, the

merits of a mass loss criterion could be evaluated and a significant contri-

bution to the knowledge of carbon ablation mechanisms might be made.

A search of the open literature indicated that data on mass loss due

to sublimation in carbon fibers were totally lacking. One study conducted

by Barnet and Norr investigated the structural aspects of carbon/graphite

filaments after oxygen plasma etching, but not the mass loss characteristics.

The results of that study supported the "circumferential-radial" mode for

high modulus polacrylonitrile (PAN) and the "onion skin" structural model

for high modulus rayon.

3 F. R. Barnet and M. K. Norr, "Carbon Fiber Etching in an Oxygen
Plasma," Carbon, Vol. Ii, 281-288 (1973).
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II. MATERIALS

The two principal precursor materials currently used in carbon fiber

fabrication for reentry applications are PAN and petroleum pitch. Primary

examples are designated HM2000 by Hercules, Inc., and Thornel P by Union

Carbode Corporation, respectively. However, to achieve the stated ob-

jectives of this program, a wide spectrum of precursor materials was

needed. Therefore, in addition to these two filaments, six additional fila-

ments were selected, including three rayon precursor filaments (see

Table 1).

The reference material for these experiments was pyrolytic graphite

(PG). This served as a valuable control because it represented extremes

in crystallographic orientation which were present in the filaments. In

addition, the C-direction of the PG also provided a suitable representation

of the pitch matrix sheath which surrounds the filaments in a carbon-carbon

composite processed by low-pressure impregnation procedures. To com-

plete the matrix structures to be evaluated, samples of bulk coal tar pitch

(Allied Chemical Corporation 277-i5V) processed by low (1000 psi) and
4

high (15, 000 psi) impregnation pressures were obtained. The bulk matrix

processed at high pressure was also taken to represent the inter -filament

matrix in a composite processed by the high-pressure procedures. The

final series of specimens were Thornel 50 multidirectional carbon-carbon

composites processed by different procedures (see Table 2).

4 J. S. Evangelides, et al., Carbon Materials Analyses, Report No.
TOR-0077(2725-01)-2, The Aerospace Corporation, El Segundo, CA
(31 December 1976).
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III. EXPERIMENTAL PROCEDURE

The filament irradiation tests were conducted on bare, unimpregnated

filaments. This required a special holding fixture to permit irradiation in

both the longitudinal and transverse directions (Figure 1). The filaments

were loaded into the fixtures and compressed by a plate to volume fractions

of 0.51 to 0.77. The transverse filament ends were cut with a scalpel to

obtain a flat surface. The longitudinal surface did not require any addi-

tional handling after loading. Bulk pitch and composite specimens were

either cylindrical or rectangular in shape and approximately 1.0 in. in

diameter (length) and 0.4 to 1.0 in. in thickness. The surfaces of these

specimens were polished with N 600 grit paper to remove any gross

machining marks.

The laser irradiation tests were conducted on the 90 kW CO 2 laser at

NASA Ames Laboratory. Typical laser power levels and exposure times

were 10 kW for 0.5 sec and 5 kW for 1.0 sec, except for the transverse

filament direction where a 10 kW power level was used. These exposure

levels were selected from preliminary tests which indicated that specimen

burn-throughs would not occur at these levels. Two different exposure

times were sought in order to estimate a mass loss rate. A flow of argon

was maintained over the specimen surface to reduce the amount of carbon

vapor that was re-depositing on the specimen surface. The temperatures

for all tests were measured by an optical pyrometer. Specimen tempera-

tures varied between 3700 ° and 4100GC. Obtaining consistently accurate

temperature measurements was difficult due to sighting and fogging

problems. However, temperatures were found to vary between ipecimens

due to slight changes in laser power and also during an exposurc due to

laser fluctuations. This was confirmed by the pictures which were taken

of each test.

tB

13A.[X. ..
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1.0
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FILAMENT, ENDS (Transverse)

NOTE: All dimensions are given in inches

Figure 1. Filament-Holding Fixture (Material: Steel)
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Weight loss was determined after each test. Specimen damage was

characterized by optical and scanning electron microscopy. The composite

specimens were cross-sectioned through the center of the crater to investi-

gate in-depth material changes. All specimen weight loss and exposure

conditions are tabulated in the Appendix. Five longitudinal filament expo-

sures were discarded due to improper beam alignment which resulted in

the edge of the holding fixture being irradiated.

15
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IV. EXPERIMENT RESULTS

A. MASS LOSS

The mass loss data were analyzed with respect to laser power and

energy to examine the effects on material property relationships. For these

experiments the cross-sectioned area of the laser beam was assumed to be

constant. Upon calculating the mass loss per deposited energy, it was

noticed that the 0. 5-sec exposures were generally higher than the 1. 0-sec

exposures (see Table 3). These higher initial mass loss rates were thought

to be due to the initial thermal shock causing microfracturing, resulting in

local spallation and mass removal. Therefore, an equilibrium rate would

be obtained only after an initial induction period. This was particularly

true for the composite and matrix specimens where the 0. 5-sec rates were

37 percent greater than the 1. 0-sec rates.

Filament mass loss was divided by laser power and plotted against

the time of exposure for each filament (see Figures 2 thru 6). The linear

regression analyses of the data resulted in strong correlations in all but a

few cases (see Table 4). As expected, irradiation in the transverse fila-

ment direction resulted in a greater mass loss than irradiation in the longi-

tudinal direction. Initially, there was concern that, since the filament

volume fraction varied from 51 to 77 percent between filament holders, any

relationships with mass loss would be obscured or altered. However, the

correlation factors between mass loss and filament volume fraction and

effective bulk density (filament volume fraction times filament density) were

poor, being only 0. 57 and -0. 23, respectively. Therefore, even though

filament volume fraction is expected to influence mass loss, it was secondary

to the large differences in filament modulus, density, and crystallographic

orientation. The filament volume fractions were calculated from the volume
of the holder, filament density, and filament mass (see Table 5).

17



Table 3. Summary of Mass Loss per Deposited Energy
for Two Exposure Times

System Direction Mass Loss per Energy Deposited
0. 5 sec 1. 0 sec Difference'# %/

WYB Transverse 22.2 18. 1 18
Thornel 50 15.4 14.6 5
Thornel 75 9.8 11. 1 -13

Thornel 300 23.0 17. 8 23
Modmor H 13. 5 13.2 2
HM2000 17.8 13.0 28
GY 70 13. 1 11.4 13

Thornel P 18.0 14.2 21

WYB Longitudinal 9. 9 -

Thornel 50 - 8. 4
Thornel 75 8.0 -

Thornel 300 14.0 14.2Z - I
Modmor 11 10. 2 6. 7 34
HM 2000 9.2 8.1 12
GY 70 7. 5 -

Thornei P 8.7 8.4 35

PG c 2.0 2.1 - 5
a 1.3 1.7 -31

GE 223 z 4.3 -

MDAC 223 z 2.1 1. 5 29

FMI 221 z 4.3 1.7 60

0HiPIC 5.5 4.9 11

LoPIC -10.3 5.4 48

*Differne between 0. 5-sec and 1. 0-sec mass losses.

18
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Table 5. Filament Volume Fraction and Density for All Specimens

Sp~ hU fl Sysc~n Ivolumei I ractiun, ffective D)ensity,
Specinln Sytemg/CC

28 w YI 64 0.84
Z9 73 0. 96

io66 0. 87
3,64 0. 84

67 0. 88

'I hornet 50 64 1. 06
670 1.1 6

7 72 1 .20
8 68 1 .13

69 1 .14

17 Thornel 75 58 1.04
18 51 0. 92
t9 57 1. 03
20 58 1. 04

56' 1. 01

9 Thurnel 300 73 1.2Z4
t0 73 1.2Z4
It 74 1.2Z6
12 75 1. 28

74" 1.2 6'

13 Modmor 11 71 1.21I
14 75 1. 28
t5 76 1. 30
16 76 1. 30

75 1. 27

1 HM2000 68 1. 23
2 65 1. 18
3 66 1. 19
4 68 1.2Z3

33 64 1. 16

66 1. 20

21 GY 70 57 1. 12
22 67 1. 31
23 65 1.27

63 1 .23:

24 Thornel P 60 1. 15
25 61 1. 17
26 64 1. 23
27 69 1. 3Z

63. 5 1.22

Ave rage
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Since the effective densities of the filament specimens varied slightly,

the mass loss data were also analyzed in terms of volume loss per unit of

power. Volume loss was calculated by dividing mass loss by filament

density. A linear regression analysis of the volume loss data revealed that

the average correlation factors were 0. 93 and 0. 92 for the volume loss and

mass loss, respectively. With such similar results, it was decided to

present the data in terms of mass loss.

The pyrolytic graphite was expected to have very low mass loss

values. The values were a factor of four to nine times lower than those for

the filaments, with the a-direction being 31 percent greater than the

c-direction (see Figure 7). The bulk matrix coal tar pitch specimens had

remarkably low values, slightly lower than the longitudinal direction of the

filaments (see Figure 8). Unfortunately, only a limited number of com-

posites could be irradiated. The three composites that were tested (see

Figure 8) had mass loss values equivalent to pyrolytic graphite (see

Figure 7). Although the composites could be ranked in terms of mass loss

rate, the average mass loss rates were very close, being 0.0134 g/kW for

composites processed by low prescsure procedures, 0. 0199 g/kW for mixed

pressure processing, and 0.0216 g/kW for high pressure processing.

B. MICROSCOPY

The appearances of the craters in all filament specimens were similar

and of a triangular shape except for the Thornel 300 filament (see Figures 9

through 11). The slightly larger craters in the transverse specimens

reflected the greater mass loss of the transverse direction. The crater in

the longitudinal direction of the Thornel 300 filament was significantly dif-

ferent from those in the other materials in that the filaments splayed out

from the crater (see Figure 10a). The WYB and Modmor II filaments had a

small amount of splay from the longitudinal crater. With a slight increase

in magnification, additional details of the craters are evident (see

Figures 12 and 13). The small amount of filament splay present in the

26
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Figure 9. Optical MacrugrLpns 01 Rayon Precursor Filaments
Before and After Laser Irradiation
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LONG ITUD INAL TRANSVERSE

BEFORE AFTER BEFORE AFTER

(a) THORNEL 300

(b) MOD MOR I I

(c) HM 2000

1.175in
(d) GY 70

Figure 10. Optical Macrographe of Polyac rylonit rile Precursor
Filaments Before and After Laser Irradiation
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LONG ITUDINAL TRANSVERSE

BEFORE AFTER BEFORE AFIERii. IIs
1.75 in.--

Figure 1 i. Optical Macrographs of Petroleum Pitch Precursor
Filament Before and After Laser Irradiation
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THORNEL 50

II

THORNEL P HM 2000

Figure 12. Scanning Electron Micrographs of Transverse Filament Craters
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WYB MODMOR II

THORNEL 50 HM 2000

THORNEL P THORNEL 75

Figure 13. Scanning Electron Micrographs of Longitudinal
Filament Craters Showing Filament Splay
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longitudinal specimens is apparent. The coating on and in the craters is

re-deposited carbon which occurred during cooldown.

Craters in the bulk pitch are shown in Figure 14. In general, the -

characteristics of these craters were not unusual. Some additional informa-

tion on pore structure and orientation was obtained at a higher magnification

of the HiPIC (high pressure) sample. The distribution of closed pores in

this high pressure sample is quite evident (see Figure 15).

Craters in the multidirectional composites were very small in com-

parison to those in the filaments due to the significantly higher density and

heat capacity of the composites (see Figure 16). The composite specimens

were sectioned to view the point of maximum penetration. The specimens

were not divided through the maximum diameter of the crater to form the

sections, so the diameter of the crater must be taken from the top view

and not from the cross-sectional view. Figures 17 through 20 show the top

and side views of the craters in the composites processed by high (DZ-2 and

BI-Z) and low (AX-I) pressure pyrolysis procedures. The smaller craters

in the composites processed by low pressure procedures were surprising.

The craters in D2-Z and BI-2 were approximately eight times deeper than

those in AX-i. Although AX-i had a more shallow crater, it encompassed

a larger area. This is in comparison to the deeper but narrower crater in

the samples processed by high pressure procedures. Again, these observa-

tions are consistent with the high mass loss (60 percent) of the composites

processed by high pressure.

The pyrolytic graphite control samples had the expected small

craters, particularly in the a-b face (see Figure 21). The crater on the

c-face was elongated in the direction of higher thermal conductivity (see

Figure 22). Examination of the crater on the a-b face at a higher magnifi-

cation did not reveal additional information (see Figure 23).

34
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1.0 in.

(a) 1,OO0psi PYROLYSIS PRESSURE

(b) 15, 000 psi PYROLYSIS PRESSURE (HIPIC)

Figure 14. Optical Micrographs of Coal Tar Pitch Precursor
After Laser Irradiation
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Figure 15. Scanning Electron Micrographs of Bulk Matrix
Pyrolyzed by HiPIG Procedure (-I)
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(a) 1,000 psi PRESSURE PYROLYSIS
COMPOSITE AX-2

(b) CVD + 15,000 psi PYROLYSIS
PRESSURE COMPOSITE D2-1

Figure 16. Optical Micrographs of Multi -Directional
Composites After Laser Irradiation
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TOP VIEW

SIDE VIEW

Figure 17. Scanning Electron Micrograph Top and
Side Views of AX-I Crater
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Figure 18. Scanning Electron Micrograph Top

View of D2-2 Crater
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Figure 19. Scanning Electron Micrograph Side View of
D2-2 Crater
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1.0 in. 1.0Oin.
a-DIRECTION c-DIRECTION

Figure 21. Optical Mac rographs of Pyrolytic Graphite After
Laser Irradiation
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F'igure Z3. Scanning Electron Micrographs of a Grater in Pyrolytic
Graphite Control Sample No. I on A-B Plane
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V. DISCUSSION

In the laser irradiation experiment, several of the relationships which

were believed to exist between filament mass loss and filament orientation,

modulus, and density were examined. The equations from the linear regres-

sion analysis were used to calculate mass losses for each system after a

one-second irradiation (see Figure 24). The three filaments of interest to

the aerospace community, Thornel 50, HM2000, and Thornel P, had equivalent

responses in both directions. The bar chart suggests possible correlations

of mass loss rate with density, modulus, or the product of modulus and

density. These are shown in Figures 25 thru 27 and the regression analysis

results are tabulated in Table 6. Good correlations were found for modulus

and the product of modulus and density with a reasonable correlation found

for density alone. Incorporating the pyrolytic graphite data into the correla-

tion (density of 2. 15 g/cc and a modulus of 100) res.ulted in equally good

correlations (see Table 6).

The results confirmed the importance of physical and mechanical

properties in controlling mass loss, and also revealed that one single

property cannot determine mass loss. This is illustrated by a comparison

of Thornel 50; HM2000, and Thornel P filaments which had equivalent mass

losses, but which were .of differing precursors (rayon, PAN, and pitch,

respectively), differing densities (1.66, 1.81, and 1.92 g/cc, respectively),

but similar moduli. A second example is a comparison of Thornel 300 and

Modmor II, which had different mass losses while having equivalent

densities and moduli. However, their precursors are not of the same PAN

family. Another comparison is between WYB, Thornel 50, and Thornel 75.
All are from a similar precursor, yet each differs in density and modulus,

further supporting the importance of these two properties. Modulus is a

result of crystallographic orientation; consequently, the degree of graphitic

registry and the arrangement of these crystallites into macrostructural

units are both important structural parameters.
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Table 6. Linear Regression Analysis of Filament Mass
Loss Property Relationships

Without Pyrolytic Graphite Data

Property Correlation Slope, Y-Intercept,

Coefficient cc/kW g/kW

Density -0.72 -. 0099 .0314

Modulus -0.87 -. 0010 .0193

Density & Modulus -0.87 -. 0005 .0190

Using Pyrolytic Graphite Data

Property Correlation Slope, Y-Intercept,
Coefficient cc/kW g/kW

Density -0.85 .. 0184 .0467

Modulus -0.88 -. 0015 .0Z15

Density& Modulus -0.96 -. 0008 .0190

"-" : mass loss data from the longitudinal filament orientation were

simi.i , ranging from only 6.4 to 13.4 g/kW. If the 13.4 g/kW is omitted,

the ranj- was from 6.4 to 8.2 g/kW. The 13.4 value was for the Thornel

300 filament which had the large amount of filament splay from the crater

(see Figure 10a). With such a dramatic crater, additional mass loss due to

microfracturing resulting in a higher than normal mass loss might be

expected. The similarity in mass losses in the longitudinal direction is not

surprising considering the small 1. 1 to 1. 9 range in transverse moduli.

In addition, there are some similarities in the microstructural characteristics,

crystallite orientation, and structure as discussed in the following paragraphs.

Due to limited data on the bulk matrix and composite samples, only

general comments can be made. The bulk matrix material eroded at a

50
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slightly slower rate than the longitudinal filament orientation, while the

transverse filament orientation eroded at the fastest rate. This ranking is
8

similar to that observed in ablation testing of composite models. The only

difference is that the bulk matrix phase erodes at a slightly faster rate than

the longitudinal filaments in actual testing. This reversed ranking of these

two components may again be due to the large specimen size with higher

heat capacity and therefore lower mass loss. The mass loss percentage was

on the order of 0.3 percent as compared to 1.0 percent for the filaments.

The three composite specimens had similar low mass losses ranging

from 0. 6 percent to 0. 1 percent. Longer exposure times at higher laser

beam energies are needed to differentiate between these composites. How-

ever, the fact that they are equivalent is consistent with recession rates
8

measured during ablation tests. The low composite mass losses are due to

two factors. First, approximately 80 percent of the composite consists of

the low mass-loss constituents, i.e., longitudinal filaments and bulk matrix.

Second'r, higher density and larger specimen size will result in lower mass

losses.

The post-test analysis of the microstructural characteristics of

individual filaments provided considerable information on filament response

and structure of carbon filaments. Figure 28 shows the morphology

structure and carbon filaments prior to irradiation. A summary of observa-

tions made from the scanning electron micrographs is tabulated in Table 7.

The rayon precursor filaments after irradiation are shown in Figures 29

thru 31. The rayon filaments typically eroded to a conical or slightly pointed

shape. Internal flaws and microporosity can be found. The internal structure

is most apparent in the WYB filament. Groups of oriented planes appear

parallel to the surface of the filament, matching the filament crenulations.

J. S. Evangelides, Presentation to the SAMSO Material Development
Coordination Committee, El Segundo, CA (February 1977).
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WYB THORNEL 50

THORNEL 300 MODMOR II

Figure 28(a). Scanning Electron micrographs of Control
Filaments Prior to Irradiation
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Figure 30. Scanning Flectron Micrograph of Thornel 50 After Irradiation
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Figure 31. Scanning Electron Micrographs of Thornel 75 After Irradiation
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'Ti, PAN precursor cross section filaments were cylindrical,

witli the ,.x( .ption of GY70, which was in the. shape of a dog bone. After

ir radiation, ca(h of the PAN filaments assumed a different characte ristic

shal) (ste Figurts 32 thru 39). Thornel 300 had the most intriguing shape.

An ext r.m. ly thin she.ath surrounded the filaments and was noticeably nmre

.rosion-resistant (se Figure 32). The filament center was the last

resistant to ablation. This cnter region had either a very fine graphitic struc-

ture- or a random struc'ture. Filament segments or wedges radiated from the

low center to the higher sheath. The ends of the Thornel 300 filament had

the, flattest post-test appearance. Modmor II assumed a conical shape, vith

a circimft rential structure which appeared segmented as shown in Figure 3.

The. IIMZ000 also assumed a conical shape, but with either a fine point or a

flat ablation-resistant core. The tTMZ000 structure was uniform, with an

"'nion skin'' or cylindrical orientation (see Figure 34). These resuits are
9

similar to those obtained by Barne t and Norr. The GY 70 filaments tapered

at the e.nds with a wedge-like appearance (see Figure 35). Occasionally a

center-core pore was present. The intornal structure was difficult to

discern in the GY 70 filament.

The final filament to be examined was the Thornel P filament which

was taperedl, with the core being the least ablation- res.istant (see Figure 36).

"hn radial structure extending to the surface was still apparent. A brief

comparison of the. filament microstructure after irradiation for the filaments

of interest is shown in Figure 37. This should be compared with Figure 38

which shows an IIM2000 and a Thornel 50 composite after ablation testing

(Air Force Flight Dynamics Laboratory (AFFDL) 50MW).

The Thornel 0 multidirectional composites processed by high and low

pressure procedures were examined at high magnification to determine the

filament-matrix response when in the form of a composite. The composite

9 F. R. Barnet and M. K. Norr, "Carbon Fiber Etching In An Oxygen
Plasma," Carbon, Vol II, pp. 281-288 (1973).
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Figure 32. Scanning Electron Micrographs of Thornel 300 After Irradiation
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Figuire 34. Scanning Electron Micrograph of 1IM2000 After Irradiation
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Figure 36. Scanning Electron Micrographs of Thornel P After Irradiation
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processed by low pressure procedures (AX-1) is shown in Figures 39 thri

41. The filaments oriented parallel to the laser beam were flat or slightly

slanted with the matrix phase being slightly more ablation-resistant (see

Figure 39). The lack of tapered filaments as in the filament tests (s(e

Figure 37) and in composite ablation tests (see Figure 38) may be due- to

the less severe environment. Flat Thornel 50 filaments were observed

ne.ar th, edges of the transverse craters for the bare filament experiments.

For the filamnts oriented normal to the laser beam, both filament and

matrix can be found (see Figure 40). Also shown in Figure 40 is a filament

fraciture which could have occurred duiring the final graphitization step during

processing. Although it could have occurred during the laser experinent,

no other evidence- of fracturing or microdamage could be found in the com-

posite samples. The cross-sectional views through the crater did not

rev,.al any evidence of me chanical damage in any of the constituents, filament

e.nds, filament sides, or bulk matrix (see Figure 41). The transverse fila-

ment, bulk matrix, and longitudinal bundle (in order of decre-asing recession)

w,.re similar to thos , observed duiring ablation testing. The r, was little

diffe.renc- h,tw,v.n the bulk matrix and longitudinal bundles in either this

expe-riment or in the ablation tests. This is consistent with the results

disitssed previously when the constituents were tested individually.

"I'hi, microstructure of the multidirectional composite processed by

high pressire- proce-dures after laser irradiation is shown in Figures 42

thri 44. The filament ends and matrix receded at an equivalent rate with

only a discontinuity at the filament-Chemical Vapor Deposition (CVD)-rnatrix

interface (see Figure 42). At the interface it was apparent that the CVD

receded at a faster rate than either the filament or matrix. At first glance

one. may conclude that the CVD offers no advantage since it erodes at a

rnuch faster rate than the othor constituents. However, if by its recession

it removes heat that would otherwise remove filament or matrix, it would

be advantageous to have a CVD layer. The filaments oriented normal to the

64
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AB[-ATION MODELS

Thornel 50 HM 1000

40,m, N W410' am

Figure 38. Scanning Electron Micrographs of Thornel 50 and
11M2000 Composites After Ablation Testing
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Figure 42. Scanning Electron Micrographs of a Transverse
Filament Bundle Composite Processed by High
Pressure Procedures After Irradiation
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laser beam were more resistant than the matrix phase (see Figure 43). The

transversely oriented inter-filament matrix is easily seen in this illustration.

The fact that there is less matrix on the longitudinal filaments may be due

to matrix recession being assisted by some mechanical removal as the CVD

layer just below the matrix vaporizes. Unfortunately, there is no direct

evidence for any mechanical removal; examination of the cross-sectional

views of each constituent again shows no signs of mechanical failure. The

top micrograph of Figure 44 shows filaments that have been partially eroded.

Also, inter-filament matrix can be found adjacent to these eroded

filaments.

These experiments have provided insight into the microstruc'u ral

mechanisms of ablation and have shown that significant differences exist in

the mass loss characteristics between constituents of carbon-carbon con-

posites. The ranking of materials in order of decreasing mass loss was:

transverse filament, longitudinal filament, bulk matrix, composites, and

pyrolytic graphite. Significant differences were found in the transverse

mass losses of filaments while the longitudinal mass losses were veryclose.

Post-test macro/nicrostructures of the transverse filaments were also

quite different for each filament. Strong correlations were found between

mass loss, filament density, and modulus, and consequently, crystallographic

orientation. However, one simple property alone did not control the mass

loss characteristics. The mass loss characteristics of the three principal

aerospace carbon filaments were equivalent.

The ranking of constituents from composite laser tests was similar to

both the constituent laser tests as well as the AFFDL 50MW composite abla-

tion tests. Since the lowest mass loss phases are 80 percent of the composite,

they have a controlling effect on ablation. This implies that since the longi-

tudinal filaments have a narrow range of mass losses, similar composites

having different filaments can also be expected to have a narrow range of

mass losses. The craters in the composites processed by high pressure

73
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procedures wore narrower and significantly deeper than the craters in

composites processed by low pressure procedures. Further microstructural

examination revealed that the CVD layer around the filaments recedes at a

faster rate than either the filaments or matrix.

A brief carbon negative ion analysis was made of the coating that
10

formed on the surface of the laser craters (set Figures 12 and 13). In
11

all case-s, they wer, found to contain carbyne forms of carbon. The-

amount of carbyne form remaining in the coating depends on two factors,

namely, the rate of transformation of the graphitic carbon and the rate at

which the coating was quenched. Qualitative results show that pyrolytic

graphite transforms at a higher rate than binder carbon or glassy carbon.

HIow the carbon fibers behave in this respect has not been determined. How-

ever, it is unlikely that the.y all transform at the same rate. The cooling

rate of the coating will depend mostly upon radiation loss and on how fast

heat can be conducted away from the coating. It was found that the carbynes

were usually most prevalent in the coatings formed on the fiber sides. Since

the radiation losses were much the same from craters formed in fiber sides

and ends, it follows that conduction losses were greatest from craters formed

on fiber sides. This conclusion is compatible with the geometry of the

samples. For a single fiber, the direction of best thermal conductivity is

along the fiber axis. Therefore, heat can be readily conducted away in two

directions from a crater produced in the side of the sample. A crater pro-

duced in the fiber ends has only one direction of good conduction.

toW. K. Stuckey and A. G. Whittaker, "The Identification of Carbon
Allotropes by Ion Microprobe Mass Analysis," Paper No. TP-177,
Abstracts of the 10th Biennial Conference on Carbon, Bethleham, PA
278 (27 June - 2 July 1971).

| 1A. G. Whittaker, "Carbon: A New View of the High-Temperature

Behavior of Carbon, " Science (May 1978).

74



Specific results obtained from examination of some of the samples

art- listed below.

Thornel 50. Craters produced in both fiber directions had a
high carbyne content, and this fiber appeared to product a
greater total amount of carbyne forms than any of the other
fibers. Also, an tinusual form of carbon (perhaps a carbyne)
was found. This form gave only C- and CZ signals and the
C-/C2 ratio was exceptionally high.

Thornel 75. Normal carbynes were found, but in low (oncentra-
tions.

1IM2000. Only the unusual carbon form (i.e., high C-/C 2 ratio)
was found.

Thornel 300. Results were much like those for Thornel 75.

GY 70. Normal carbynes were found in a concentration that was
intermediate between those of Thornel 50 and Thornel 75.

Thornel P. Normal carbynes were found, but in a low concentra-
tion as in Thornel 75.

WYB. This showed only the form of a high C-/C 2 ratio. A
-o'tive ion spectrum showed that this fiber was very low in

inorganic impurities.

Modmor II. Normal carbynes in concentration similar to that
in Thornel 75 were found.

All of the samples showed evidence of particle emission. The heating

chamber was equipped with a tray to catch emitted material for analysis by

the scanning electron microscope (SEM) and electron diffraction. A SEM

search showed that most of the emitted material was composed of short

segments and clusters of fibers. A few splats were found which indicated

that the carbon was heated above its melting point (- 3800 ° K). Most of the

electron diffraction patterns showed diffuse rings that are characteristic of

graphitic carbon. A few clean single crystal patterns of chaoite were

obtained.
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VI. CONCLUSIONS

The laser irradiation experiments have shown that: (a) correlations

exist between mass loss and materials properties, (b) significant differences

in mass loss characteristics exist between the composite constituents and,

(c) ablation testing results in similar correlations. It was concluded that

laser irradiation of reentry nose tip materials can be used to screen

candidate materials as well as to simulate an ablation environment. It is

highly rtcomme.nde.d that further testing be conducted on a variety of multi-

directional carbon-carbon composites to obtain mass loss data, as well as

to further the knowledge of composite ablation mechanisms. With such in-

formation, correlations between laser mass loss and ablation recession rates

can be investigated.

Carbon negative ion spectra obtained from the material coating the

laser craters showed that the carbon fibers transformed to carbyne forms

of carbon during the heating cycle. The different types of fibers did not

transform to the same extent.

Particle emission was observed in all cases and splats from liquid

carbon were found in the emitted material. Electron diffraction patterns

showed that most of the emitted material was raphitic, but a few single

crystal patterns of chaoitc were found.
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APPENDIX. SUMMARY OF EXPERIMENTAL DATA

Vila. -fitSp n i V, W'-~ht ,as,. r r.di,ti,*

i t.t,, ,. [ '!K, 1,,v,., kW % V,,,,(-

W Y B-28 Lonji tudlinal 64 0. 79 .49 II ,2
Transv.rs 5. 22 10. 77 2. 11(

-Z9 Transv,.rs,. 7 1 5.07 22. 16 2.152
-10 "lransv. rs. 66 1.86 22. M0 0. 5 r4
- 'I ransvvrs, 64 1. 74 20. 15 0.492

I horn,-I 50.5 Longitudinal 64 1. 27" 1. 76 0. -5 4
Transv trs- . 85 1 2. 1 2 1.048

-6 L..ngitticinal 70 . 04 In 20. 29 o. 5 ;2
Transvers. 4.00 9.95 . 05

-7 Longitudinal 72 0.99 5. 60 0. 91
I ratisv rs, 2. 16 10. 86 0. : r,6

.8 Lounilwrlinl 68 2. 5 5 .91 0,924
1 ransvrs, 2. 20 10. 75 0. ,190

I I.,,rr,.I 175- 17 Longitudinal 58 0. 71 6.49 0. 5z2.
I ransv,.rs, 4.09 1 . 79 1.079

28 Longittilinal 52 1 0. 74 6.0 4 0. 507
I ransv.rs,. 4.08 10. 78 I. 162

- !2) Transvrs, 57 .90 9.76 0.52-,
.20 T ransv.rs,. 58 0. 85 10. 24 0. 5 V)

[hornI 100-9 Longitudinal 7i .40 t0. 22 0. 5 15
Iransv. rs,. 1. 15 1 10. 5 1.060

-20 Longitudinal 7 1.48 10.64 0.500
rransvwrst. 3. 11 9.26 1. 036

-I I Longibidinal 74 2. 16 5.44 0.968
rransv,'rs ' 2. 15 11. is o. 569

-12 Longitudinal 75 I. 19 6. 10 0.748
Transv.,rs, 2. 22 20. 0 0. 5 10

Mo-lmor I- I 2 Longittdinal 77 0.84 0.59 0. 520
Traisv rs, 2.02 10.42 1.020

-14 Longitudinal 75 0. 56 6.61 0. 582
Transvors. 2.24 20.95 . 068

- 15 Longitudinal 76 0. 5 1 6. 3, 0.9 16
Transvrs, .28 10.05 0.501

-26 Longitiinal 76 0. 6 . 6.74 0.952

Transv,rs. 0.68 10.28 0.528

IfMz000- I Longittudinal 68 0.98 12.00 0. 504
Transv,-rs, 3. 52 10.62 .088

-2 Longitudinal 65 0.9 3 It. 12 0. 550

Transvrs ,'. 22 10.88 .0 0
- 3 Longitudinal 66 0.98 6. 34 1.002

Transv,.rst, 2.96 10.49 1.030
-4 Longitudinal 68 0.99 6.06 .000

Trransvrs 2. 219 22.91 0.590
- i Transv rs, 64 . 56 10.58 0.499

.'l.eam hit metal holder, data discarded.
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APPPN'NDX. . LM'MARY 0Th' EXPERIfMENTAL DATA (Continued)

, c i, riill W'. ilIht Laser I rraldial ionS.r'ct 11,1 1". ' floW' r, kW "I'lln,, $cc

(;Y 7oi.'1 I.(,mii:l 'I.68 5.7,1 0.495
''ransv,rhi. 4.00 10, 77 1,090

22 .,nlmudlbuIl 7 o. ') ' 6.70 0. 952
.ransvrs, . ) 10.40 0. 559

-1!3 I nignitudial 65 o. 6r, 6.07 0.89!

Transv,.rs, 2.25 t 0. 94 0. 210

fl'rh-,l I2. 6I~in.iuin;,I (6 0. 81) 6.92 0. 500
r ran.v.rs 3.41 10.28 1.090

- ) .,gi tidi nal 61 0.70 6. 56 0.490
lra nsv,, rs-. 2. P2 9.04 1. 1o0

-26 L'inglitudi'raI 64 0,87 %. 96 0. CjI
"Iransv.-rs. 2.,01) It. 32 0.522

-27 Lonvi [ i n, I 69 0. 9,  6.61 0. 940
lransv.-rs,. 1.78 10. 66 0.523

P.-Ic 0. 1 3 6.45 0.969
, 0.04 5.71 0. 509

-2 c O. I1 5. 56 0.984
a 0or, 5.73 0.524
c , 1 1 4. ;9 0.914

20.12 6.4Z 1.087
-4 0.07 5.22 0. 506

A 0. 14 5.57 1.047

I.:22 I - 1 z 0. 21 6. 7 0. 504
-0 0. 14 5. 52 0.500
- I 0.05 6.48 0.493

MI)AC AX-I 1 0. 17 6.02 0.554
-2 0. zi 5.91 1.036

FM122 1 4-I z 0. 11 5.67 0.538
-2 0.07 , .33 0.986

1-:22, 1 )2- I z 0. i0 5.50 0.517
-2 0. 14 - .5.82 0.500

lli 1I(. I 0 5.83 0.500
7 0. Z4 6.57 1.036

MDAC LO 1 0.25 5. 32 0.548
4 0. Z6 5.01 t. 004

1l,-.Lm hit metal holder, data discarded.
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